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Abstract

The nucleus of eukaryotic cells is organized into functionally specialized compartments that are essential for the control of gene expression,
chromosome architecture and cellular differentiation. The mouse oocyte nucleus or germinal vesicle (GV) exhibits a unique chromatin
configuration that is subject to dynamic modifications during oogenesis. This process of ‘epigenetic maturation’ is critical to confer the female
gamete with meiotic as well as developmental competence. In spite of its biological significance, little is known concerning the cellular and
molecular mechanisms regulating large-scale chromatin structure in mammalian oocytes. Here, recent findings that provide mechanistic insight
into the complex relationship between large-scale chromatin structure and global transcriptional repression in pre-ovulatory oocytes will be
discussed. Post-translational modifications of histone proteins such as acetylation and methylation are crucial for heterochromatin formation and
thus play a key role in remodeling the oocyte genome. This strategy involves multiple and hierarchical chromatin modifications that regulate
nuclear dynamics in response to a developmentally programmed signal(s), presumably of paracrine origin, before the resumption of meiosis.
Models for the experimental manipulation of large-scale chromatin structure in vivo and in vitro will be instrumental to determine the key cellular
pathways and oocyte-derived factors involved in genome-wide chromatin modifications. Importantly, analysis of the functional differentiation of
chromatin structure in the oocyte genome with high resolution and in real time will have wide-ranging implications to understand the role of
nuclear organization in meiosis, the events of nuclear reprogramming and the spatio-temporal regulation of gene expression during development
and differentiation.
© 2006 Elsevier Inc. All rights reserved.
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Introduction doctoral students, described a structure ‘analogous to the

germinal vesicle’ in mammalian ova that the notion of the

Purkinje’s germinal vesicle: early descriptions of the
mammalian oocyte nucleus

In 1825, Jan Evangelista Purkinje, then at the University of
Breslaw, published a treaty entitled ‘De evolutione vesiculae
germinativae’ (on the development of the germinal vesicle).
Using only a hand-held lens, Purkinje described the presence
and consistency of a vesicular structure in the hen’s egg, which
he named the vesicula germinativa (germinal vesicle) because
he initially considered this ‘vesicle’ as an entire cell from which
an embryo would subsequently arise and not as the cell nucleus.
It was not until 1834 that Adolph Bernhardt, one of Purkinje’s

E-mail address: rfuente@vet.upenn.edu.

0012-1606/$ - see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.ydbio.2006.01.008

germinal vesicle as the oocyte nucleus emerged (Harris, 1999).
Studying the graafian follicle of the sheep in 1835, Rudolph
Wagner discovered the presence of a ‘spot’ within the germinal
vesicle. Wagner speculated that the function of the structure he
chose to call macula germinativa (germinal spot) was the origin
or first stage in the development of the germinal vesicle.
Although his observations provide the initial description of the
nucleolus, the term itself was not introduced until 1839 by
Gabriel Gustav Valentin, also Purkinje’s close collaborator. In
describing his observations on (Purkinje’s) cells of the central
nervous system, Valentin makes reference to the nucleolus as a
‘rounded, transparent secondary nucleus’ to describe the macula
germinativa discovered by Wagner (Harris, 1999).

Although the term germinal vesicle has not lived up to the
initial expectations of its nature as an embryonic rudiment, it is
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still widely used among reproductive biologists to denote the
nucleus of mammalian oocytes. Perhaps it is only suiting that a
cell nucleus with such a unique and specialized structure and
function has retained such a sui generis designation.

Epigenetic modifications during oogenesis

In the mammalian neonatal ovary, oocytes are naturally
arrested at prophase I of meiosis. From the onset of ovarian
follicle activation, oocytes are maintained in a protracted
meiotic arrest at the diplotene or dictyate stage during post-
natal development. Meiotic arrest is maintained until puberty
when the luteinizing hormone (LH) surge stimulates the
resumption of meiosis in one or more oocytes depending on
the species (Eppig et al., 2004). In the mouse ovary, the first
wave of oocyte growth and differentiation is synchronous and
is also the time at which maternal-specific genomic imprints
are established on a locus by locus basis (Bourc’his et al.,
2001; Eppig et al., 2004; Kono et al., 1996; Lucifero et al.,
2004; Obata et al.,, 2002). This process of epigenetic
modifications or ‘epigenetic maturation’ is capable of
affecting gene expression without a change in DNA sequence
and ultimately confers the mammalian genome with a sex-
specific mark or genomic imprint essential for embryonic
development (Barton et al., 1984; McGrath and Solter, 1984;
Obata et al., 1998; Surani, 1998). The mechanisms underlying
the developmental regulation of epigenetic modifications on
specific loci are still not clear, however, they are the focus of
intense investigation (Bourc’his et al., 2001; Fedoriw et al.,
2004; Howell et al., 2001; Li, 2002; Morgan et al., 2005;
Reik et al., 2001).

Importantly, the oocyte genome is also subject to additional
levels of regulation, and functional differentiation of large-
scale chromatin structure provides an important epigenetic
mechanism for the developmental control of global gene
expression (Eppig et al., 2004; Patterton and Wolffe, 1996).
For example, recent studies indicate that, coincident with
follicular activation, an oocyte-specific linker histone (H1foo)
is loaded into the mouse oocyte nucleus (Tanaka et al., 2001;
Tanaka et al., 2005) consistent with a possible role for
multiple subtypes of linker histone H1 during oogenesis
(Adenot et al., 2000; Fu et al., 2003; Wiekowski et al., 1997).
Moreover, dynamic changes in chromatin structure and
function occur during oocyte growth in several mammalian
species. Morphological transitions in the GV were originally
recognized in human (Parfenov et al., 1989), monkey (Lefevre
et al., 1989), rat (Mandl, 1962), mouse (Chouinard, 1975) and
pig oocytes (McGaughey et al., 1979). However, Mattson and
Albertini provided the initial evidence for sequential changes
in chromatin organization during folliculogenesis in the mouse
and described the formation, coincident with follicular antrum
differentiation, of a perinucleolar chromatin rim in the GV
(Mattson and Albertini, 1990). Subsequent studies confirmed
that chromatin in growing mouse oocytes (Fig. 1A) is initially
found decondensed in a configuration termed Non-surrounded
nucleolus (NSN) (Debey et al., 1993). Furthermore, these
studies provided additional evidence indicating that, with
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Fig. 1. Chromatin configuration in the germinal vesicle (GV) of fully grown
mouse oocytes. (A) Representative micrograph illustrating a decondensed
chromatin configuration (Non-surrounded nucleolus; NSN) with prominent
heterochromatin regions (arrowhead). The position of the nucleolus is indicated
by (*). DNA was stained with Hoechst 33248 and shown in red. (B) Chromatin
condensation around the nucleolus (Surrounded nucleolus; SN) is associated
with the formation of a heterochromatin rim or karyosphere (100x). Similar
large-scale chromatin remodeling events have been described in oocytes of
several mammalian species.

subsequent growth and differentiation, oocytes undergo a
dramatic change in nuclear organization in which chromatin
becomes progressively condensed (Fig. 1B), forming a
heterochromatin rim in close apposition with the nucleolus,
thus acquiring a configuration termed Surrounded nucleolus
(SN) (Debey et al., 1993; Zuccotti et al., 1995) or karyosphere
(Parfenov et al., 1989). Notable exceptions to this process
include the goat (Sui et al., 2005) and equine oocyte (Hinrichs
and Williams, 1997) in which chromatin condensation
acquires a different configuration during the final stages of
oogenesis.

In the human and mouse ovum, these changes in large-
scale chromatin structure are in turn associated with
profound modifications in the metabolic status of the oocyte
genome. For instance, oocytes with the NSN configuration
exhibit high levels of transcription (Figs. 2A, B). In contrast,
the acquisition of the SN configuration is associated with
global repression of transcriptional activity in vivo (Bou-
niolBaly et al., 1999; Miyara et al., 2003; Parfenov et al.,
1989) as well as in cultured oocyte—granulosa cell
complexes (De La Fuente and Eppig, 2001 and Figs. 2A—
D). In addition, the transition into the SN configuration
correlates with the timely progression of meiotic maturation
(Debey et al., 1993; Schramm et al., 1993; Wickramasinghe
et al., 1991) and with higher rates of blastocyst formation
after in vitro fertilization of mouse oocytes (Zuccotti et al.,
1998). Thus, functional differentiation of chromatin structure
in the GV provides the oocyte genome with an additional
level for the control of transcription on a global scale.
Importantly, changes in large-scale chromatin structure (at
the chromosomal level) are essential to confer growing
oocytes with meiotic and developmental competence.
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Fig. 2. Chromatin configuration and global transcriptional activity in mouse oocytes. (A) DNA staining of the two major types of chromatin configuration present in
fully grown oocytes. (B) A decondensed (NSN) configuration is associated with active RNA synthesis as detected by the incorporation of bromo-UTP (Br-UTP) into
nascent transcripts (red). The transition into the SN configuration is associated with global transcriptional repression as determined by the lack of Br-UTP
incorporation in a different oocyte present in the same transcription run-on assay. (C) Phase contrast micrograph showing a vacuolated nucleolus in transcriptionally
active oocytes and a condensed nucleolus in a transcriptionally quiescent oocyte (40%). (D) Merge.

Large-scale chromatin structure and global transcriptional
repression

Following transcriptional silencing, pre-ovulatory oocytes
rely on maternal messenger RNA (mRNA) stores to resume
meiosis and sustain the first cleavage divisions after
fertilization (Hodgman et al., 2001; Stebbinsboaz et al.,
1996). Thus, the timing of transcriptional repression is
critical for subsequent embryonic development. For example,
experimentally extending the period between transcriptional
repression in the GV and the onset of meiotic maturation for
4—6 days (equivalent to the length of one estrous cycle in
mice) reduced the cleavage rates and the frequency of
blastocyst formation in mouse embryos (De La Fuente and
Eppig, 2001). This suggests that the developmental potential
of transcriptionally quiescent pre-ovulatory oocytes main-
tained in an extended prophase arrest for more than one
estrous cycle might be severely compromised. Therefore,
synthesis and storage of viable, translationally dormant,
maternal products before the onset of global transcriptional
silencing, are essential for the oocyte’s acquisition of
developmental competence.

In spite of its biological significance, little is known
concerning the cell signaling pathways and molecules
involved in coordinating changes in large-scale chromatin
structure, such as the transition into the SN configuration,
with the onset of transcriptional repression. It is well
established that, in mammalian somatic cells, transcriptional
silencing occurs during the transit through mitosis (Gottes-
feld and Forbes, 1997). However, global repression of
transcription in the GV occurs long before germinal vesicle
breakdown and the condensation of individual chromosomes.

This suggests that, in contrast with somatic cells, unique
strategies are set in place for the control of transcriptional
silencing in pre-ovulatory oocytes. Using transgenic mice
deficient for nucleoplasmin 2 (Nme_/_) (Burns et al., 2003;
De La Fuente et al.,, 2004a), we have begun to dissect the
relationship between the transition into the SN configuration
and transcriptional repression in mammalian oocytes. Mouse
Npm2 is the mammalian ortholog of Xenopus Ilaevis
(NPM2), a nuclear chaperone involved in remodeling
sperm chromatin in Xenopus egg extracts. Oocytes from
Npm2 knockout mice exhibit aberrant chromatin configura-
tion (Burns et al., 2003) and thus provide a unique model to
determine whether nuclear remodeling into the SN config-
uration is strictly required for transcriptional quiescence in
the oocyte genome. Simultaneous analysis of chromatin
configuration and global transcriptional activity using DNA
fluorochromes and transcription run-on assays demonstrated
that, although the transition into the SN configuration fails
to occur in pre-ovulatory oocytes obtained from gonadotro-
pin-stimulated Npm?2 null females, global transcriptional
activity is still repressed in the nucleoplasm of Npm?2
deficient ova (De La Fuente et al., 2004a). It is important to
emphasize that, although these oocytes exhibit disorganized
nucleoli in large clusters of heterochromatin regions,
chromatin in the nucleoplasm remains decondensed and at
least morphologically resembles that of growing oocytes.
These results indicate that remodeling chromatin into the SN
configuration is not strictly required for global transcription-
al repression in mammalian oocytes. Moreover, although
these two processes occur concomitantly in wild-type pre-
ovulatory oocytes, changes in large-scale chromatin structure
and global transcriptional silencing can be experimentally



4 R. De La Fuente / Developmental Biology 292 (2006) 1-12

dissociated and are likely under the control of different
pathways (De La Fuente et al., 2004a). These studies also
provided the initial evidence indicating that, in addition to
changes in large-scale chromatin structure, alternative
mechanisms are set in place to induce transcriptional
quiescence in the GV before the resumption of meiosis.

The primary mechanism(s) responsible for silencing the
oocyte genome remain to be determined. However, it is
conceivable that changes in the expression levels or nuclear
availability of several transcription factors such as Spl and
the TATA-box binding protein (TBP) (Worrad et al., 1994)
or component molecules of the RNA polymerase II
holoenzyme (Bellier et al., 1997; Gebara et al., 1997;
Miyara et al., 2003; Parfenov et al., 2000, 2003) may halt
ongoing nucleoplasmic transcription during the final stages
of oocyte growth and differentiation even in the absence of
the transition into the SN configuration. The complexity of
this process, however, is illustrated by recent evidence
indicating that different mechanisms seem to regulate
ribosomal RNA (rRNA) transcriptional repression since the
two subunits of RNA polymerase I, the upstream binding
factor UBF as well as several proteins involved in both
rRNA processing and ribosome biogenesis remain associated
with the nucleolus even after the transition into the SN
configuration (Zatsepina et al., 2000).

Evidence for a role of cumulus granulosa cells in the
modulation of global transcription and large-scale chromatin
structure in the GV

The initial indications of the potential involvement of
companion granulosa cells in modulating large-scale chromatin
remodeling during mammalian oocyte growth were obtained
through the use of a unique system for the culture of mouse
oocyte—granulosa cell complexes obtained from pre-antral
follicles (Eppig and O’Brien, 1996). This system for in vitro
gametogenesis sustains the synchronous acquisition of meiotic
and developmental competence in a large number of oocytes
and proved essential for the analysis of the critical window
during oocyte growth when major changes in nuclear remodel-
ing take place. For example, analysis of chromatin configura-
tion and transcriptional activity in cultured oocyte—granulosa
cell complexes demonstrated that transcriptional repression and
the concomitant transition into the SN configuration occur in
>87% of in vitro grown oocytes at an equivalent chronological
stage compared with in vivo derived ova. However, in the
absence of a patent gap junctional communication with somatic
granulosa cells, transcriptional activity remained unabated in
denuded oocytes (De La Fuente and Eppig, 2001). These results
provided the first experimental evidence suggesting that
companion granulosa cells contribute with an as yet unidenti-
fied signal, presumably of paracrine origin that modulates
transcription and large-scale chromatin remodeling in the
oocyte genome (De La Fuente and Eppig, 2001). Subsequent
studies have confirmed a role for cumulus granulosa cells in the
modulation of transcription in the GV and suggested that
transcriptional repression in fully grown mouse oocytes that

exhibit the SN configuration correlates with higher rates of
meiotic maturation to the metaphase II stage (Liu and Aoki,
2002). Oocyte growth and differentiation depend on the
establishment of a patent bidirectional communication mediated
by heterologous gap junctions between oocytes and companion
granulosa cells during folliculogenesis (Eppig, 2001; Matzuk et
al., 2002; Mehlmann et al., 2004). However, although cumulus
granulosa cells have been shown to affect the phosphorylation
of several oocyte-derived proteins (Cecconi et al.,, 1991;
Colonna et al., 1989), the signal(s) emanating from cumulus
cells that might be involved in remodeling chromatin in the GV
remain to be determined. Nevertheless, accumulating evidence
indicates that, at least in the mouse model, cumulus granulosa
cells that remain in contact with the oocyte serve a critical role
in the developmental regulation of global transcriptional
silencing in pre-ovulatory oocytes.

Insights into the mechanisms of large-scale chromatin
modifications in the GV: role of histone deacetylases (HDACs)

The mechanisms involved in the developmental modulation
of large-scale chromatin remodeling in the GV are most likely
part of a complex physiological process. However, in
eukaryotic cells, multiple signaling pathways converge to
induce post-translational modifications at specific amino acid
residues of the core histone proteins (Cheung et al., 2000;
Fischle et al., 2003; Jenuwein and Allis, 2001), thus multiple
histone post-translational modifications such as phosphoryla-
tion (Peterson and Laniel, 2004), acetylation (Grunstein, 1997;
Turner, 2000), methylation (Bannister et al., 2001; Peterson and
Laniel, 2004), poly (ADP) ribosylation (Faraone-Mennella,
2005; Rouleau et al., 2004) and ubiquitination (Zhang, 2003)
play an essential role in the regulation of gene expression in
response to environmental stimuli (Cheung et al., 2000;
Jaenisch and Bird, 2003). Histone modifications may also
result from changes in the metabolic state of a cell or as a
response to extracellular signals and therefore constitute an
efficient system to enhance the processing of genetic informa-
tion (Cheung et al., 2000; Grunstein, 1997; Wolffe and Pruss,
1996). Binding of different histone variants to the chromatin
template as well as post-translational modifications in the amino
terminal domain of histone tails contributes to the establishment
of epigenetic modifications in the mammalian genome
(Jenuwein and Allis, 2001; Sarma and Reinberg, 2005). In
turn, modifications of histone tails function to induce the
formation of euchromatin or heterochromatin domains depend-
ing on the “context” of histone and nucleosomal interactions.
For example, di-methylation of histone H3 at lysine 4 (H3K4
Me) is associated with transcriptionally permissive euchromatic
regions of the mammalian genome but is excluded from
transcriptionally silent heterochromatin domains (Santos-Rosa
et al., 2002). In contrast, tri-methylation of lysine 9 on histone
H3 (H3K9 Me) is exclusively associated with centromeric
heterochromatin (Bannister et al., 2001). Such an epigenetic
state is stable, heritable through cell division and essential to
maintain the patterns of gene expression (Michelotti et al., 1997;
Turner, 2000).
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Histone acetylation is associated with modifications in
higher order chromatin structure whereby an ‘open’ chromatin
configuration in the nucleosome results in enhanced transcrip-
tional activity. Importantly, acetylation of histone H4 at lysine 5
(H4KS5 Ac) is associated with the maximum level of acetylation
on histone H4 (Cheung et al., 2000; Grunstein, 1997; Turner,
2000; Wolffe and Pruss, 1996). In contrast, histone deacetylases
(HDACs) have the potential for inducing transcriptional
repression at promoter regions of target genes or to induce
chromatin modifications over several Kb sequences and thus
potentially determine different patterns of chromatin structure
across the Drosophila genome (Ekwall et al., 1997; Fuks et al.,
2001; Grunstein, 1997; Turner, 2000). Further evidence
indicates that HDACs may also be essential for the regulation
of gene expression during developmental transitions affecting
embryonic patterning in C. elegans and Drosophila (Ahringer,
2000).

Importantly, HDACs also seem to participate in the
maintenance of the SN configuration in the GV of mouse
oocytes (De La Fuente et al., 2004a). Inhibition of HDACs
activity with trichostatin A in pre-ovulatory oocytes that exhibit
the SN configuration resulted in a striking decondensation of
euchromatin regions within 8 h of treatment (Fig. 3).
Interestingly, centromeric heterochromatin associated with the
nucleolus showed only a partial response to TSA exposure (De
La Fuente et al., 2004a). HDACs are also critical to regulate
essential aspects of large-scale chromatin remodeling during
meiosis as indicated by recent evidence suggesting the existence
of a wave of genome-wide histone deacetylation taking place
upon meiotic resumption (De La Fuente et al., 2004b; Kim et
al., 2003; Sarmento et al., 2004).

Genome-wide histone deacetylation at several lysine resi-
dues has been demonstrated in mitotic cells (Kruhlak et al.,

DNA
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2001) and upon resumption of meiosis in mouse (De La Fuente
et al., 2004b; Kim et al., 2003; Sarmento et al., 2004) and pig
oocytes (Endo et al., 2005). This is consistent with the notion
that the basic mechanisms of chromatin modifications have
been evolutionarily conserved in mammals (Bannister et al.,
2001; Lachner et al., 2001; Rea et al., 2000). Histone
deacetylases have been implicated in the establishment of
chromatin marks required for stable maintenance of chromo-
some structure and function through cell division (Ekwall et al.,
1997; Taddei et al., 2001). Chromatin modifications, however,
are multiple and complex, and several post-translational
modifications at different amino acid residues of the histone
protein may take place simultaneously to determine a biological
response or a developmental transition (Jenuwein and Allis,
2001). For example, deacetylation of histone H4 at lysine 12
(H4K12) occurs coincident with the onset of meiosis in mouse
oocytes but not during mitotic cell division (Kim et al., 2003).
Similar mechanisms exist in the mouse oocyte that induce the
removal of arginine methylation from histones H3/H4 in
condensing meiotic chromosomes (Sarmento et al., 2004), a
process that might be of biological significance for genome
reprogramming in the female gamete (Akiyama et al., 2004;
Kim et al., 2003; Kruhlak et al., 2001).

Evidence has also been provided for a role of HDACs in
the epigenetic control of heterochromatin formation in S.
pombe, Drosophila (Ekwall et al., 1997; Karpen and
Allshire, 1997) and, more recently, in human mitotic cells
(Taddei et al., 2001) and mouse oocytes (De La Fuente et
al., 2004a,b) where global changes in histone H3/H4
acetylation regulated by HDACs may be critical to determine
the localization of heterochromatin binding proteins to
specific sub-domains in mammalian chromosomes (De La
Fuente et al., 2004a; Taddei et al, 2001). For example,
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Fig. 3. Role of histone deacetylases in large-scale chromatin remodeling in the GV. (A) The nucleus of a pre-ovulatory oocyte showing the SN configuration. DNA was
stained with Hoechst 33248 and shown in blue. The position of the nucleolus is indicated by (*). Heterochromatin domains can be distinguished by their intense
Hoechst fluorescence (arrowhead). (B) Corresponding micrograph showing staining patterns for histone H3 di-methylated at lysine 4 (H3K4 Me) in the oocyte
genome. (C) Merge (100x). (D) Striking chromatin decondensation induced by treatment of pre-ovulatory oocytes with 150 nM trichostatin A (+TSA). (E)
Simultaneous staining with a monoclonal antibody against H3K4 Me reveals highly decondensed euchromatin fibers occupying the entire volume of the GV.
Importantly, heterochromatin domains (arrowheads) lack H3K4 Me staining. (F) Merge (100%). Consistent with its role in euchromatin formation, H3K4 Me is

excluded from heterochromatin domains in the mammalian oocyte genome.
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underacetylation of histone H4 at lysine 5 (H4KS5) at
pericentric heterochromatin is essential to recruit heterochro-
matin protein 1 (HPI) specifically to the centromere of
mitotic chromosomes in both human and murine somatic
cells (Taddei et al.,, 2001). Moreover, studies conducted in
mouse oocytes indicate that genome-wide histone deacetyla-
tion during meiosis is essential for the binding of ATRX (a
chromatin remodeling protein) to centromeric heterochroma-
tin in condensed chromosomes (De La Fuente et al., 2004b).
Consistent with this hypothesis, pharmacological inhibition
of HDACs with TSA during meiosis induced chromosome
hyperacetylation, disrupted the binding of ATRX to centro-
meric domains and resulted in the formation of abnormal
chromosome alignments at the meiotic spindle (De La Fuente
et al., 2004b). These observations indicate that HDACs are
involved in modulating non-targeted modifications in large-
scale chromatin structure in the GV and that this process is
essential for the progression of meiosis.

The nature of the specific HDACs involved in genome-wide
chromatin modifications in the GV of mammalian oocytes is not
known at present. Three major subclasses of HDACs have been
described to date (Ahringer, 2000; Thiagalingam et al., 2003),
members of the Class I, yeast Rpd3p-like deacetylase family
(HDACI, -2, -3 and 8), members of class Il HDACs sharing
homology with yeast Hdalp (HDAC 4,-5,-6,-7,-9 and 10) as
well as the recently described mammalian homologues of yeast
SIR2 which form a distinct class of NAD-dependent deacety-
lases suggested to play a role in chromatin remodeling
(Thiagalingam et al., 2003; Verdel and Khochbin, 1999).
Interestingly, over-expression of HDAC6 induced premature
chromatin condensation in the GV as well as both male and
female pronuclei in fertilized oocytes (Verdel et al., 2003).
Moreover, previous studies indicate that members of the Class I,
yeast Rpd3p-like family (HDACI, -2 and -3) may be involved
in transcriptional repression at regulatory sequences of reporter
genes (Hassig et al., 1998; Kadosh and Struhl, 1998; Taunton et
al., 1996; Yang et al., 1996).

Histone methylation and the transition to the first mitosis

In contrast to the dynamic nature of histone modifications
induced by HDACs (Katan-Khaykovich and Struhl, 2002;
Kouzarides, 2000; Vogelauer et al., 2000), changes in chromatin
modifications induced by histone and DNA methylation are
very stable and, as such, have the potential to stabilize
epigenetic modifications through critical developmental transi-
tions (Bannister et al., 2002; Kubicek and Jenuwein, 2004).
Therefore, changes in genome-wide histone acetylation and/or
methylation during oogenesis (Fig. 4) may contribute to the
establishment and/or maintenance of epigenetic asymmetry
between the paternal and maternal genomes after fertilization.
The range of chromatin modifications taking place specifically
in the maternal or paternal genomes of the mouse zygote has
been reviewed elsewhere (Chang et al., 2005; Morgan et al.,
2005). Differences in chromatin modifications between the
maternal and paternal pronucleus result in both hyperacetylation
(Adenot et al., 1997) and global histone demethylation in the

paternal pronucleus (Arney et al., 2002; Erhardt et al., 2003; Liu
et al., 2004; Santos et al., 2005) as well as demethylation of
CpG islands on sperm-derived single-copy genes (Mayer et al.,
2000; Oswald et al., 2000). The mechanisms responsible for
protecting the maternal genome from histone and DNA
demethylation immediately after fertilization are not clear at
present. However, di-methylation of histone H3 at lysine 9
(H3KD9) in the maternal genome has been recently suggested to
have a role in preventing histone demethylation in the female
pronucleus during the first cell cycle (Morgan et al., 2005;
Santos et al., 2005).

Identification of the role of specific histone demethylases
involved in global chromatin modifications in mammalian
gametes and embryos will have major implications for our
understanding of the mechanisms regulating genome repro-
gramming during mammalian development (Hajkova et al.,
2002; Li, 2002; Morgan et al., 2005; Reik et al., 2001;
Surani, 2001) and to determine the potential impact of
epigenetic asymmetry between paternal and maternal genomes
in lineage commitment during cell differentiation (Reik and
Lewis, 2005; Rossant and Tam, 2004). However, character-
ization of histone demethylases in mammalian cells has
remained elusive until the recent identification of several
proteins capable of inducing demethylation of arginine
(Cuthbert et al., 2004; Wang et al., 2004) or lysine residues
(Shi et al., 2004) of histones H3/H4. Elimination of the
methylated arginine 3 residues of histone H4 is catalyzed by
the peptidyl arginine deimidase (PAD) enzyme in several
human cell lines (Cuthbert et al., 2004; Wang et al., 2004).
Moreover, PAD is expressed in mouse oocytes, where it has
been suggested to play a role in the removal of methylated
arginine 3 of histone H4 from condensing chromosomes after
the resumption of meiosis (Sarmento et al., 2004; Wright et
al., 2003). Importantly, the first bona fide lysine-specific
demethylase (LSD1) has been recently described (Shi et al.,
2004). LSD1 has been evolutionarily conserved from yeast to
human, and several lines of evidence indicate that it is
specifically involved in demethylation of lysine 4 on histone
H3 at promoter regions of neuronal and cell cycle regulatory
genes in mammals (Shi et al., 2004). However, LSD1 does
not seem to be involved in the control of global or genome-
wide H3K4 methylation (Shi et al., 2004). In addition, the
expression of two cytidine deaminases (AID and Apobec 1)
with potential for demethylating 5-methyl cytosine residues in
DNA has been recently detected in mouse oocytes, primordial
germ cells and embryonic stem cells (Morgan et al., 2004).
The potential involvement of any of these novel histone
demethylases in the establishment of epigenetic asymmetry
between parental genomes remains to be demonstrated.

Conclusions

The mammalian oocyte nucleus is subject to multiple
levels of regulation for the control of gene expression (Fig.
5). For example, cycles of cytoplasmic polyadenylation and
deadenylation in regulatory sequences determine the selective
expression and/or accumulation of dormant maternal
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Fig. 4. Dynamic changes in global histone acetylation during meiosis. (A) Resumption of meiosis is associated with a wave of genome-wide histone deacetylation at
several lysine residues for histones H3/H4 (upper panel). Inhibition of histone deacetylases (HDACs) in maturing oocytes after exposure to trichostatin A (TSA)
induces hyperacetylation of histone H4 at lysine 5 (H4K5 Ac; green) in meiotic chromosomes (lower panel). H4KS5 Ac is associated with the maximum level of histone
H4 acetylation, and removal of this lysine modification by genome-wide deacetylation during meiosis is essential to recruit heterochromatin-binding proteins to
centromeric domains. (B) In contrast with the rapid transitions in histone deacetylation, histone methylation marks are stable and transmitted through meiotic cell
division. For example, methylation of histone H3 at lysine 4 (H3K4 Me; red) is restricted to the chromatids of meiotic chromosomes in oocytes at the metaphase 11
stage (note that all centromeres are stained in blue; upper panel). Importantly, centromeric heterochromatin domains lack H3K4 Me, even after exposure of oocytes to
TSA (lower panel). Although TSA induced abnormal chromosome morphology, the epigenetic mark provided by H3K4 Me is still restricted to the chromatids of
individual chromosomes and is not spread over centromeric heterochromatin domains. The position of the polar body (Pb) on a metaphase II stage oocyte is indicated.

transcripts essential to sustain the progression of meiosis and
the first cleavage division (Groisman et al., 2002; Hodgman
et al., 2001). Gene-specific regulatory elements acting in (cis)
induce °‘local’” changes in DNA methylation that are
associated with targeted modifications in chromatin structure
and function at promoter regions (Fedoriw et al., 2004).
Importantly, recent evidence indicates that superimposed on
the ‘local’ control mechanisms regulating expression of
individual loci lays an important non-targeted strategy for
the control of transcription at the global scale. This strategy
involves multiple and hierarchical large-scale chromatin
modifications that regulate global transcription before the
onset of meiosis. Thus, chromatin modifications and remodel-
ing occur not only at specific promoter regions and cis-acting

regulatory elements of single-copy genes but also throughout
large sections of the genome (Berger and Felsenfeld, 2001;
Vogelauer et al., 2000).

However, in direct contrast with our current understanding
of the ‘local’ chromatin-dependent mechanisms that control
single-copy gene expression in somatic cells (Narlikar et al.,
2002), little is known concerning the unique molecular
mechanisms involved in the regulation of large-scale
chromatin structure and its impact on global transcription in
the female germ line. Current models for the manipulation of
large-scale chromatin structure in vivo (Npm2 knockout) as
well as the pharmacological inhibition of HDACs suggest that
the specific changes in global chromatin structure leading to
the transition into the SN configuration, although dispensable
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Fig. 5. Functional differentiation of chromatin structure during mouse oocyte growth. Coordinated transcription and translational control mechanisms regulate single-
copy gene expression in the oocyte genome. Synthesis and storage of dormant maternal mRNAs during oogenesis are essential for the completion of meiosis and pre-
implantation development. During oocyte growth, establishment of maternal-specific imprints occurs on a locus-by-locus basis through the methylation of CpG
dinucleotides present within regulatory DNA sequences of single-copy genes. Coincident with the formation of antral follicles on day 14 of post-natal development,
oocytes acquire meiotic competence. At this stage, the oocyte genome is at the peak of its global transcriptional activity. From day 17 of post-natal development
onwards, subsequent oocyte growth and differentiation are associated with the onset of large-scale chromatin remodeling, leading to the transition into the SN
configuration and global transcriptional quiescence in a cohort of pre-ovulatory oocytes. Although the mechanisms regulating large-scale chromatin remodeling in the
GV are not known, current models for in vitro gametogenesis together with experimental manipulation of global chromatin structure in vivo and in vitro provide a

unique experimental paradigm to address these pathways.

for transcriptional repression, may confer specific chromatin
domains with a functional configuration to recruit hetero-
chromatin binding proteins and hence play an essential role in
the progression of meiosis and perhaps in reinforcing the
transcriptional quiescence of a pre-ovulatory oocyte.
Whether subtle changes at the level of the 30 nm DNA fiber
or its tertiary folding take place during transcriptional repression
in the mouse oocyte genome remains to be determined.
Prospects are in sight for the application of novel live cell
imaging analysis methods that will allow a three-dimensional
reconstruction of the nuclear environment with high resolution

(perhaps at the level of 30—100 nm) and in real time (O’Brien et
al., 2003) in order to gain a better understanding of how the
‘histone code’ (Jenuwein and Allis, 2001) or changes in
nucleosome structure brought about by ATP-dependent chro-
matin remodeling complexes (Berger and Felsenfeld, 2001;
Vogelauer et al., 2000) may impact large-scale chromatin
structure in the mammalian germ line. Such a ‘glimpse’ at the
spatial arrangements of chromosomes in live cells will
contribute with invaluable new information towards a better
understanding of the events involved in genome reprogramming
after somatic cell nuclear transfer (Gao et al., 2004; Teranishi et
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al., 2004; Wade and Kikyo, 2002). For example, recent studies
on protein dynamics revealed that the mammalian cell nucleus
is in a continual state of flux. Thus, in addition to providing a
strategic advantage to mount a rapid response to environmental
signals or a specific developmental transition, dynamic changes
in nuclear architecture also provide the natural basis for
genomic plasticity (Chubb and Bickmore, 2003; Wolffe and
Hansen, 2001).

Integrating information obtained from studies of chromatin
organization on single-copy genes (local) and large-scale with
high resolution and in real time will also be critical to
understand the spatio-temporal regulation of gene expression
during development and differentiation (Hamatani et al.,
2004a; O’Brien et al., 2003; Zeng and Schultz, 2005).
Importantly, studies on chromatin modifications during
mammalian oocyte growth will have wide-ranging implica-
tions for our understanding of the role of nuclear architecture
in the progression of meiosis as well as the mechanisms
leading to genomic instability in the female germ line. For
example, the expression of genes encoding several chromatin-
binding proteins and DNA methyltransferases has recently
been shown to be down-regulated in aging mouse oocytes
(Hamatani et al., 2004b). Thus, a better understanding of the
cellular and molecular mechanisms regulating chromatin
modifications in fully grown mammalian oocytes is needed
in order to shed new light into both intrinsic and
environmental factors that might predispose the female
gamete to the onset of aneuploidy.

Acknowledgments

Research in the author’s laboratory is supported by a grant
from the National Institute of Child Health and Human
Development (NICHD): HD042740. The comments of Drs.
Maria M. Viveiros and Claudia Baumann during manuscript
preparation are greatly appreciated.

References

Adenot, P.G., Mercier, Y., Renard, J.P., Thompson, E.M., 1997. Differential H4
acetylation of paternal and maternal chromatin precedes DNA replication
and differential transcriptional activity in pronuclei of I-cell mouse
embryos. Development 124, 4615-4625.

Adenot, P., Campion, E., Legouy, E., Allis, C.D., Dimitrov, S., Renard, J.,
Thompson, E.M., 2000. Somatic linker histone H1 is present throughout
mouse embryogenesis and is not replaced by variant H1 degrees. J. Cell Sci.
113, 2897-2907.

Ahringer, J., 2000. NuRD and SIN3 histone deacetylase complexes in
development. Trends Genet. 16, 351-356.

Akiyama, T., Kim, J.M., Nagata, M., Aoki, F., 2004. Regulation of histone
acetylation during meiotic maturation in mouse oocytes. Mol. Reprod. Dev.
69, 222-227.

Armey, K.L., Bao, S., Bannister, A.J., Kouzarides, T., Surani, M.A., 2002.
Histone methylation defines epigenetic asymmetry in the mouse zygote. Int.
J. Dev. Biol. 46, 317-320.

Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O.,
Allshire, R.C., Kouzarides, T., 2001. Selective recognition of methylated
lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120—124.

Bannister, A.J., Schneider, R., Kouzarides, T., 2002. Histone methylation:
dynamic or static? Cell 109, 801-806.

Barton, S.C., Surani, M.A., Norris, M.L., 1984. Role of paternal and maternal
genomes in mouse development. Nature 311, 374-376.

Bellier, S., Chastant, S., Adenot, P., Vincent, M., Renard, J.P., Bensaude, O.,
1997. Nuclear translocation and carboxyl-terminal domain phosphorylation
of RNA polymerase II delineate the two phases of zygotic gene activation in
mammalian embryos. EMBO J. 16, 6250—6262.

Berger, S., Felsenfeld, G., 2001. Chromatin goes global. Mol. Cell 8,
263-268.

BouniolBaly, C., Hamraoui, L., Guibert, J., Beaujean, N., Szollosi, M.S., Debey,
P., 1999. Differential transcriptional activity associated with chromatin
configuration in fully-grown mouse germinal vesicle oocytes. Biol. Reprod.
60, 580-587.

Bourc’his, D., Xu, G.L., Lin, C.S., Bollman, B., Bestor, T.H., 2001. Dnmt3L
and the establishment of maternal genomic imprints. Science 294,
2536-2539.

Burns, K., Viveiros, M.M., Ren, Y., Wang, P., DeMayo, F.J., Frail, D.E., Eppig,
J.J., Matzuk, M.M., 2003. Roles of NPM2 in chromatin and nucleolar
organization in oocytes and embryos. Science 300, 633-636.

Cecconi, S., Tatone, C., Buccione, R., Mangia, F., Colonna, R., 1991. Granulosa
cell-oocyte interactions: the phosphorylation of specific proteins in mouse
oocytes at the germinal vesicle stage is dependent upon the differentiative
state of companion somatic cells. J. Exp. Zool. 258, 249-254.

Chang, C.C., Ma, Y., Jacobs, S., Tian, X.C., Yang, X., Rasmussen, T.P., 2005. A
maternal store of macroH2A is removed from pronuclei prior to onset of
somatic macroH2A expression in preimplantation embryos. Dev. Biol. 278,
367-380.

Cheung, P., Allis, C.D., Sassone-Corsi, P., 2000. Signaling to chromatin through
histone modifications. Cell 103, 263-271.

Chouinard, L.A., 1975. A light- and electron-microscope study of the oocyte
nucleus during development of the antral follicle in the prepubertal mouse.
J. Cell Sci. 17, 589-615.

Chubb, J.R., Bickmore, W.A., 2003. Considering nuclear compartmentalization
in the light of nuclear dynamics. Cell 112, 403-406.

Colonna, R., Cecconi, S., Tatone, C., Mangia, F., Buccione, R., 1989. Somatic
cell-oocyte interactions in mouse oogenesis: stage-specific regulation of
mouse oocyte protein phosphorylation by granulosa cells. Dev. Biol. 133,
305-308.

Cuthbert, G.L., Daujat, S., Snowden, A.W., Erdjument-Bromage, H.,
Hagiwara, T., Yamada, M., Schneider, R., Gregory, P.D., Tempst, P.,
Bannister, A.J., Kouzarides, T., 2004. Histone deimination antagonizes
arginine methylation. Cell 118, 545-553.

Debey, P., Sz6l16si, M.S., Szol16si, D., Vautier, D., Girousse, A., Besombes, D.,
1993. Competent mouse oocytes isolated from antral follicles exhibit
different chromatin organization and follow different maturation dynamics.
Mol. Reprod. Dev. 36, 59-74.

De La Fuente, R., Eppig, J.J., 2001. Transcriptional activity of the mouse oocyte
genome: companion granulosa cells modulate transcription and chromatin
remodeling. Dev. Biol. 229, 224-236.

De La Fuente, R., Viveiros, M., Burns, K., Adashi, E., Matzuk, M., Eppig, J.,
2004a. Major chromatin remodeling in the germinal vesicle (GV) of
mammalian oocytes is dispensable for global transcriptional silencing but
required for centromeric heterochromatin function. Dev. Biol. 275,
447-458.

De La Fuente, R., Viveiros, M., Wigglesworth, K., Eppig, J.J., 2004b. ATRX, a
member of the SNF2 family of helicase/ATPases, is required for
chromosome alignment and meiotic spindle organization in metaphase II
stage mouse oocytes. Dev. Biol. 272, 1-14.

Ekwall, K., Olsson, T., Turner, B.M., Cranston, G., Allshire, R.C.,
1997. Transient inhibition of histone deacetylation alters the
structural and functional imprint at fission yeast centromeres. Cell
91, 1021-1032.

Endo, T., Naito, K., Aoki, F., Kume, S., Tojo, H., 2005. Changes in histone
modifications during in vitro maturation of porcine oocytes. Mol. Reprod.
Dev. 71, 123-128.

Eppig, J.J., 2001. Oocyte control of ovarian follicular development and function
in mammals. Reproduction 122, 829-838.

Eppig, J.J., O’Brien, M.J., 1996. Development in vitro of mouse oocytes from
primordial follicles. Biol. Reprod. 54, 197-207.



10 R. De La Fuente / Developmental Biology 292 (2006) 1-12

Eppig, J.J., Viveiros, M.M., Marin-Bivens, C., De La Fuente, R., 2004.
Regulation of mammalian oocyte maturation. In: Leung, P.C.K., Adashi, E.Y.
(Eds.), The Ovary. Elsevier, Amsterdam, pp. 113—129.

Erhardt, S., Su, I.H., Schneider, R., Barton, S., Bannister, A.J., Perez-Burgos, L.,
Jenuwein, T., Kouzarides, T., Tarakhovsky, A., Surani, M.A., 2003.
Consequences of the depletion of zygotic and embryonic enhancer of
zeste 2 during preimplantation mouse development. Development 130,
4235-4248.

Faraone-Mennella, M.R., 2005. Chromatin architecture and functions: the role
(s) of poly(ADP-RIBOSE) polymerase and poly(ADPribosyl)ation of
nuclear proteins. Biochem. Cell. Biol. 83, 396—-404.

Fedoriw, A.M., Stein, P., Svoboda, P., Schultz, R.M., Bartolomei, M.S., 2004.
Transgenic RNAi reveals essential function for CTCF in H19 gene
imprinting. Science 303, 238-240.

Fischle, W., Wang, Y., Allis, C., 2003. Binary switches and modification
cassettes in histone biology and beyond. Nature 425, 475-479.

Fu, G., Ghadam, P., Sirotkin, A., Khochbin, S., Skoultchi, A.L., Clarke, H.J.,
2003. Mouse oocytes and early embryos express multiple histone H1
subtypes. Biol. Reprod. 68, 1569-1576.

Fuks, F., Burgers, W.A., Godin, N., Kasai, M., Kouzarides, T., 2001. Dnmt3a
binds deacetylases and is recruited by a sequence-specific repressor to
silence transcription. EMBO J. 20, 2536-2544.

Gao, S., Chung, Y.G., Parseghian, M.H., King, G.J., Adashi, E.Y., Latham, K.E.,
2004. Rapid H1 linker histone transitions following fertilization or somatic
cell nuclear transfer: evidence for a uniform developmental program in mice.
Dev. Biol. 266, 62—75.

Gebara, M.M., Sayre, M.H., Corden, J.L., 1997. Phosphorylation of the
carboxy-terminal repeat domain in RNA polymerase II by cyclin-
dependent kinases is sufficient to inhibit transcription. J. Cell. Biochem.
64, 390-402.

Gottesfeld, J.M., Forbes, D.J., 1997. Mitotic repression of the transcriptional
machinery. Trends Biochem. Sci. 22, 197-202.

Groisman, 1., Jung, M.Y., Sarkissian, M., Cao, Q., Richter, J.D., 2002.
Translational control of the embryonic cell cycle. Cell 109, 473-483.

Grunstein, M., 1997. Histone acetylation in chromatin structure and
transcription. Nature 389, 349-352.

Hajkova, P., Erhardt, S., Lane, N., Haaf, T., El-Maarri, O., Reik, W., Walter, J.,
Surani, M.A., 2002. Epigenetic reprogramming in mouse primordial germ
cells. Mech. Dev. 117, 15-23.

Hamatani, T., Carter, M.G., Sharov, A.A., Ko, M.S., 2004a. Dynamics of global
gene expression changes during mouse preimplantation development. Dev.
Cell 6, 117-131.

Hamatani, T., Falco, G., Carter, M.G., Akutsu, H., Stagg, C.A., Sharov, A.A.,
Dudekula, D.B., VanBuren, V., Ko, M.S., 2004b. Age-associated alteration
of gene expression patterns in mouse oocytes. Hum. Mol. Genet. 13,
2263-2278.

Harris, H., 1999. The discovery of the cell nucleus. In: Harris, H. (Ed.), The
Birth of the Cell. Yale Univ. Press, New Heaven, pp. 76—93.

Hassig, C.A., Tong, J.K., Fleischer, T.C., Owa, T., Grable, P.G., Ayer, D.E.,
Schreiber, S.L., 1998. A role for histone deacetylase activity in HDAC1-
mediated transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 95,
3519-3524.

Hinrichs, K., Williams, K.A., 1997. Relationships among oocyte-cumulus
morphology, follicular atresia, initial chromatin configuration, and oocyte
meiotic competence in the horse. Biol. Reprod. 57, 377-384.

Hodgman, R., Tay, J., Mendez, R., Richter, J.D., 2001. CPEB phosphorylation
and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in
maturing mouse oocytes. Development 128, 2815-2822.

Howell, C.Y., Bestor, T.H., Ding, F., Latham, K.E., Mertineit, C., Trasler, J.M.,
Chaillet, J.R., 2001. Genomic imprinting disrupted by a maternal effect
mutation in the Dnmtl gene. Cell 104, 829—838.

Jaenisch, R., Bird, A., 2003. Epigenetic regulation of gene expression: how the
genome integrates intrinsic and environmental signals. Nat. Genet. 33,
245-254.

Jenuwein, T., Allis, C.D., 2001. Translating the histone code. Science 293,
1074-1080.

Kadosh, D., Struhl, K., 1998. Histone deacetylase activity of Rpd3 is important
for transcriptional repression in vivo. Genes Dev. 12, 797-805.

Karpen, G.H., Allshire, R.C., 1997. The case for epigenetic effects on
centromere identity and function. Trends Genet. 13, 489—496.

Katan-Khaykovich, Y., Struhl, K., 2002. Dynamics of global histone
acetylation and deacetylation in vivo: rapid restoration of normal histone
acetylation status upon removal of activators and repressors. Genes Dev.
16, 743-752.

Kim, J., Liu, H., Tazaki, M., Nagata, M., Aoki, F., 2003. Changes in histone
acetylation during mouse oocyte meiosis. J. Cell Biol. 162, 37-46.

Kono, T., Obata, Y., Yoshimzu, T., Nakahara, T., Carroll, J., 1996. Epigenetic
modifications during oocyte growth correlates with extended parthenogenetic
development in the mouse. Nat. Genet. 13, 91-94.

Kouzarides, T., 2000. Acetylation: a regulatory modification to rival
phosphorylation? EMBO J. 19, 1176—-1179.

Kruhlak, M.J., Hendzel, M.J., Fischle, W., Bertos, N.R., Hameed, S., Yang, X.J.,
Verdin, E., Bazett-Jones, D.P., 2001. Regulation of global acetylation in
mitosis through loss of histone acetyltransferases and deacetylases from
chromatin. J. Biol. Chem. 276, 38307—-38319.

Kubicek, S., Jenuwein, T., 2004. A crack in histone lysine methylation. Cell 119,
903-906.

Lachner, M., O’Carroll, D., Rea, S., Mechtler, K., Jenuwein, T., 2001.
Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins.
Nature 410, 116—120.

Lefevre, B., Gougeon, A., Nome, F., Testart, J., 1989. In vivo changes in oocyte
germinal vesicle related to follicular quality and size at mid-follicular phase
during stimulated cycles in the cynomolgus monkey. Reprod. Nutr. Dev. 29,
523-531.

Li, E., 2002. Chromatin modification and epigenetic reprogramming in
mammalian development. Nat. Rev., Genet. 3, 662—673.

Liu, H., Aoki, F., 2002. Transcriptional activity associated with meiotic
competence in fully-grown mouse GV oocytes. Zygote 10, 327-332.

Liu, H., Kim, J., Aoki, F., 2004. Regulation of histone H3 lysine 9 methylation
in oocytes and early pre-implantation embryos. Development 131,
2269-2280.

Lucifero, D., Mann, M.R., Bartolomei, M.S., Trasler, J.M., 2004. Gene-specific
timing and epigenetic memory in oocyte imprinting. Hum. Mol. Genet. 13,
839-849.

Mandl, A.M., 1962. Preovulatory changes in the oocyte of the adult rat. Proc. R.
Soc. London 158, 105-118.

Mattson, B.A., Albertini, D.F., 1990. Oogenesis: chromatin and microtubule
dynamics during meiotic prophase. Mol. Reprod. Dev. 25, 374-383.

Matzuk, M.M., Burns, K.H., Viveiros, M.M., Eppig, J.J., 2002. Intercellular
communication in the mammalian ovary: oocytes carry the conversation.
Science 296, 2178-2180.

Mayer, W., Niveleau, A., Walter, J., Fundele, R., Haaf, T., 2000. Demethylation
of the zygotic paternal genome. Nature 403, 501-502.

McGaughey, R.W., Montgomery, D.H., Richter, J.D., 1979. Germinal vesicle
configurations and patterns of polypeptide synthesis of porcine oocytes from
antral follicles of different size, as related to their competency for
spontaneous maturation. J. Exp. Zool. 209, 239-254.

McGrath, J., Solter, D., 1984. Completion of mouse embryogenesis requires
both the maternal and paternal genomes. Cell 37, 179—183.

Mehlmann, L.M., Saeki, Y., Tanaka, S., Brennan, T.J., Evsikov, A.V., Pendola,
F.L., Knowles, B.B., Eppig, J.J., Jaffe, L.A., 2004. The Gs-linked receptor
GPR3 maintains meiotic arrest in mammalian oocytes. Science 306,
1947-1950.

Michelotti, E.F., Sanford, S., Levens, D., 1997. Marking of active genes on
mitotic chromosomes. Nature 388, 895—-899.

Miyara, F., Migne, C., Dumont-Hassan, M., Meur, A.L., Cohen-Bacrie, P.,
Aubriot, F.X., Glissant, A., Nathan, C., Douard, S., Stanovici, A., Debey, P.,
2003. Chromatin configuration and transcriptional control in human and
mouse oocytes. Mol. Reprod. Dev. 64, 458—470.

Morgan, H.D., Dean, W., Coker, H.A., Reik, W., Petersen-Mahrt, S.K., 2004.
Activation-induced cytidine deaminase deaminates 5-methylcytosine in
DNA and is expressed in pluripotent tissues: implications for epigenetic
reprogramming. J. Biol. Chem. 279, 52353-52360.

Morgan, H.D., Santos, F., Green, K., Dean, W., Reik, W., 2005. Epigenetic
reprogramming in mammals. Hum. Mol. Genet. 14 (Spec No. 1),
R47-R58.



R. De La Fuente / Developmental Biology 292 (2006) 1-12 11

Narlikar, G.J., Fan, H.Y., Kingston, R.E., 2002. Cooperation between complexes
that regulate chromatin structure and transcription. Cell 108, 475-487.
Obata, Y., K.T., 2002. Maternal primary imprinting is established at a specific
time for each gene throughout oocyte growth. J. Biol. Chem. 277,

5285-5289.

Obata, Y., K.-L.T., Koide, T., Takai, Y., Ueda, T., Domeki, I., Shiroishi, T.,
Ishino, F., Kono, T., 1998. Disruption of primary imprinting during oocyte
growth leads to the modified expression of imprinted genes during
embryogenesis. Development 125, 1553—1560.

O’Brien, T.P., Bult, C.J., Cremer, C., Grunze, M., Knowles, B.B., Langowski, J.,
McNally, J., Pederson, T., Politz, J.C., Pombo, A., Schmahl, G., Spatz, J.P.,
van Driel, R., 2003. Genome function and nuclear architecture: from gene
expression to nanoscience. Genome Res. 13, 1029-1041.

Oswald, J., Engemann, S., Lane, N., Mayer, W., Olek, A., Fundele, R., Dean,
W., Reik, W., Walter, J., 2000. Active demethylation of the paternal genome
in the mouse zygote. Curr. Biol. 10, 475-478.

Parfenov, V., Potchukalina, G., Dudina, L., Kostyuchek, D., Gruzova, M., 1989.
Human antral follicles: oocyte nucleus and the karyosphere formation
(electron microscopic and autoradiographic data). Gamete Res. 22,
219-231.

Parfenov, V.N., Davis, D.S., Pochukalina, G.N., Kostyuchek, D., Murti, K.G.,
2000. Nuclear distribution of RNA polymerase II in human oocytes from
antral follicles: dynamics relative to the transcriptional state and association
with splicing factors. J. Cell. Biochem. 77, 654—665.

Parfenov, V., Pochukalina, G., Davis, D., Reinbold, R., Scholer, H., Murti, K.,
2003. Nuclear distribution of Oct-4 transcription factor in transcriptionally
active and inactive mouse oocytes and its relation to RNA polymerase II and
splicing factors. J. Cell. Biochem. 89, 720-732.

Patterton, D., Wolffe, A.P., 1996. Developmental roles for chromatin and
chromosomal structure. Dev. Biol. 173, 2—13.

Peterson, C.L., Laniel, M.A., 2004. Histones and histone modifications. Curr.
Biol. 14, R546—R551.

Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil,
S., Mechtler, K., Ponting, C.P., Allis, C.D., Jenuwein, T., 2000. Regulation of
chromatin structure by site-specific histone H3 methyltransferases. Nature 406,
593-599.

Reik, W., Lewis, A., 2005. Co-evolution of X-chromosome inactivation and
imprinting in mammals. Nat. Rev., Genet. 6, 403—410.

Reik, W., Dean, W., Walter, J., 2001. Epigenetic reprogramming in mammalian
development. Science 293, 1089—-1093.

Rossant, J., Tam, P.P., 2004. Emerging asymmetry and embryonic patterning in
early mouse development. Dev. Cell 7, 155-164.

Rouleau, M., Aubin, R.A., Poirier, G.G., 2004. Poly(ADP-ribosyl)ated
chromatin domains: access granted. J. Cell Sci. 117, 815-825.

Santos, F., Peters, A.H., Otte, A.P., Reik, W., Dean, W., 2005. Dynamic
chromatin modifications characterise the first cell cycle in mouse embryos.
Dev. Biol. 280, 225-236.

Santos-Rosa, H., Schneider, R., Bannister, A.J., Sherriff, J., Bernstein, B.E.,
Emre, N.C., Schreiber, S.L., Mellor, J., Kouzarides, T., 2002. Active genes
are tri-methylated at K4 of histone H3. Nature 419, 407—-411.

Sarma, K., Reinberg, D., 2005. Histone variants meet their match. Nat. Rev.,
Mol. Cell Biol. 6, 139—-149.

Sarmento, O.F., Digilio, L.C., Wang, Y., Perlin, J., Herr, J.C., Allis, C.D.,
Coonrod, S.A., 2004. Dynamic alterations of specific histone modifications
during early murine development. J. Cell Sci. 117, 4449—-4459.

Schramm, R.D., Tennier, M.T., Boatman, D.E., Bavister, B.D., 1993.
Chromatin configurations and meiotic competence of oocytes are related
to follicular diameter in non-stimulated rhesus monkeys. Biol. Reprod.
48, 349-356.

Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero,
R.A., 2004. Histone demethylation mediated by the nuclear amine oxidase
homolog LSDI. Cell 119, 941-953.

Stebbinsboaz, B., Hake, L.E., Richter, J.D., 1996. CPEB controls the
cytoplasmic polyadenylation of cyclin, cdk2 and c-mos mRNAs and is
necessary for oocyte maturation in Xenopus. EMBO J. 15, 2582-2592.

Sui, H.S., Liu, Y., Miao, D.Q., Yuan, J.H., Qiao, T.W., Luo, M.J., Tan, J.H.,
2005. Configurations of germinal vesicle (GV) chromatin in the goat differ
from those of other species. Mol. Reprod. Dev. 71, 227-236.

Surani, M.A., 1998. Imprinting and the initiation of gene silencing in the germ
line. Cell 93, 309-312.

Surani, M., 2001. Reprogramming of genome function through epigenetic
inheritance. Nature 414, 122—-128.

Taddei, A., Maison, C., Roche, D., Almouzni, G., 2001. Reversible disruption of
pericentric heterochromatin and centromere function by inhibiting
deacetylases. Nat. Cell Biol. 3, 114-120.

Tanaka, M., Hennebold, J.D., Macfarlane, J., Adashi, E.Y., 2001. A mammalian
oocyte-specific linker histone gene Hloo: homology with the genes for the
oocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/
HI1M histone of the frog. Development 128, 655-664.

Tanaka, M., Kihara, M., Hennebold, J.D., Eppig, J.J., Viveiros, M.M., Emery,
B.R., Carrell, D.T., Kirkman, N.J., Meczekalski, B., Zhou, J., Bondy, C.A.,
Becker, M., Schultz, R.M., Misteli, T., De La Fuente, R., King, G.J.,
Adashi, E.Y., 2005. HIFOO is coupled to the initiation of oocytic growth.
Biol. Reprod. 72, 135-142.

Taunton, J., Hassig, C.A., Schreiber, S.L., 1996. A mammalian histone
deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272,
408—411.

Teranishi, T., Tanaka, M., Kimoto, S., Ono, Y., Miyakoshi, K., Kono, T.,
Yoshimura, Y., 2004. Rapid replacement of somatic linker histones with the
oocyte-specific linker histone Hlfoo in nuclear transfer. Dev. Biol. 266,
76-86.

Thiagalingam, S., Cheng, K.H., Lee, H.J., Mineva, N., Thiagalingam, A., Ponte,
J.F., 2003. Histone deacetylases: unique players in shaping the epigenetic
histone code. Ann. N. Y. Acad. Sci. 983, 84—-100.

Turner, B.M., 2000. Histone acetylation and an epigenetic code. BioEssays 22,
836-845.

Verdel, A., Khochbin, S., 1999. Identification of a new family of higher
eukaryotic histone deacetylases. Coordinate expression of differentiation-
dependent chromatin modifiers. J. Biol. Chem. 274, 2440—-2445.

Verdel, A., Seigneurin-Berny, D., Faure, A.K., Eddahbi, M., Khochbin, S.,
Noncheyv, S., 2003. HDAC6-induced premature chromatin compaction in
mouse oocytes and fertilized eggs. Zygote 11, 323-328.

Vogelauer, M., Wu, J., Suka, N., Grunstein, M., 2000. Global histone acetylation
and deacetylation in yeast. Nature 408, 495-498.

Wade, P.A., Kikyo, N., 2002. Chromatin remodeling in nuclear cloning. Eur. J.
Biochem. 269, 2284-2287.

Wang, Y., Wysocka, J., Sayegh, J., Lee, Y.H., Perlin, J.R., Leonelli, L.,
Sonbuchner, L.S., McDonald, C.H., Cook, R.G., Dou, Y., Roeder, R.G.,
Clarke, S., Stallcup, M.R., Allis, C.D., Coonrod, S.A., 2004. Human PAD4
regulates histone arginine methylation levels via demethylimination.
Science 306, 279-283.

Wickramasinghe, D., Ebert, K.M., Albertini, D.F., 1991. Meiotic competence
acquisition is associated with the appearance of M-phase characteristics in
growing mouse oocytes. Dev. Biol. 143, 162—172.

Wiekowski, M., Miranda, M., Nothias, J.Y., DePamphilis, M.L., 1997. Changes
in histone synthesis and modification at the beginning of mouse
development correlate with the establishment of chromatin mediated
repression of transcription. J. Cell Sci. 110 (Pt. 10), 1147-1158.

Wolffe, A.P., Hansen, J.C., 2001. Nuclear visions: functional flexibility from
structural instability. Cell 104, 631-634.

Wolffe, A.P., Pruss, D., 1996. Targeting chromatin disruption: transcription
regulators that acetylate histones. Cell 84, 817-819.

Worrad, D.M., Ram, P.T., Schultz, R.M., 1994. Regulation of gene expression in
the mouse oocyte and early preimplantation embryo: developmental changes
in Spl and TATA box-binding protein, TBP. Development 120, 2347-2357.

Wright, P.W., Bolling, L.C., Calvert, M.E., Sarmento, O.F., Berkeley, E.V.,
Shea, M.C., Hao, Z., Jayes, F.C., Bush, L.A., Shetty, J., Shore, A.N., Reddi,
P.P, Tung, K.S., Samy, E., Allietta, M.M., Sherman, N.E., Herr, J.C.,
Coonrod, S.A., 2003. ePAD, an oocyte and early embryo-abundant
peptidylarginine deiminase-like protein that localizes to egg cytoplasmic
sheets. Dev. Biol. 256, 73—88.

Yang, W.M., Inouye, C., Zeng, Y., Bearss, D., Seto, E., 1996. Transcriptional
repression by YY1 is mediated by interaction with a mammalian homolog of
the yeast global regulator RPD3. Proc. Natl. Acad. Sci. U. S. A. 93,
12845-12850.

Zatsepina, O.V., Bouniol-Baly, C., Amirand, C., Debey, P., 2000. Functional and



12 R. De La Fuente / Developmental Biology 292 (2006) 1-12

molecular reorganization of the nucleolar apparatus in maturing mouse Zuccotti, M., Piccinelli, A., Rossi, P.G., Garagna, S., Redi, C.A., 1995.

oocytes. Dev. Biol. 223, 354-370. Chromatin organization during mouse oocyte growth. Mol. Reprod. Dev.
Zeng, F., Schultz, R.M., 2005. RNA transcript profiling during zygotic gene (4), 479-485.

activation in the preimplantation mouse embryo. Dev. Biol. 283, 40—57. Zuccotti, M., Rossi, P.G., Martinez, A., Garagna, S., Forabosco, A., Redi, C.A.,
Zhang, Y., 2003. Transcriptional regulation by histone ubiquitination and 1998. Meiotic and developmental competence of mouse antral oocytes. Biol.

deubiquitination. Genes Dev. 17, 2733-2740. Reprod. 58, 700—-704.



	Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes
	Introduction
	Purkinje's germinal vesicle: early descriptions of the �mammalian oocyte nucleus
	Epigenetic modifications during oogenesis
	Large-scale chromatin structure and global transcriptional repression
	Evidence for a role of cumulus granulosa cells in the modulation of global transcription and la.....
	Insights into the mechanisms of large-scale chromatin modifications in the GV: role of histone .....
	Histone methylation and the transition to the first mitosis

	Conclusions
	Acknowledgments
	References


